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the Roe scheme [22]) may give inferior results [19]. One
known example is the computation of slowly movingWe begin a systematical study on the effect of numerical viscosi-

ties. In this paper we investigate the behavior of shock-capturing shocks. Here slowly moving means that the ratio of the
methods for slowly moving shocks. It is known that for slowly mov- shock speed to the maximum wave speed in the domain
ing shocks even a first-order scheme, such as the Godunov or Roe is much smaller than one. Several references have reportedtype methods, will generate downstream oscillatory wave patterns

the difficulty of computing slowly moving shocks [28, 21,that cannot be effectively damped by the dissipation of these first-
order schemes. The purpose of this paper is to understand the 19], where first-order Godunov or Roe type methods pro-
formation and behavior of these downstream patterns. Our study duce spurious long wave oscillations behind the shock,
shows that the downstream errors are generated by the unsteady which eventually ruin the downstream solution.
nature of the viscous shock profiles and behave diffusively. The

In [28] Colella and Woodward discussed this kind ofscenario is as follows. When solving the compressible Euler equa-
error in some detail and give a heuristic explanation of it.tions by shock capturing methods, the smeared density profile intro-

duces a momentum spike at the shock location if the shock moves They also presented additional numerical dissipation terms
slowly. Downstream waves will necessarily emerge in order to bal- in their PPM method to damp it. Roberts [21] showed
ance the momentum mass carried by the spike for the momentum that their explanation of the error is incomplete and thatconservation. Although each family of waves decays in l y and l 2

different schemes (i.e., different numerical flux formulas)while they preserve the same mass, the perturbing nature of the
viscous or spike profile is a constant source for the generation of have significant different levels of these oscillations. This
new downstream waves, causing spurious solutions for all time. error is inherent to nonlinear systems of equations. The
Higher order TVD or ENO type interpolations accentuate this use of total variation diminishing (TVD) concepts in the
problem. Q 1996 Academic Press, Inc.

construction of higher order schemes accentuates the prob-
lem. Several improvements on the Roe solver have been
suggested [21, 11, 2], which could reduce the level of, but1. INTRODUCTION
did not completely eliminate, this kind of noise.

In the past two decades there have been tremendous Unless a full understanding of the nature of this numeri-
progress in the development of numerical methods for cal phenomenon is gained one cannot expect the develop-
solving the equations governing the unsteady flow of an ment of a robust mechanism to completely filter out this
inviscid, adiabatic ideal gas—the Euler equations. First- kind of oscillations. The goal of this paper is to carefully
order methods usually do not generate numerical oscilla- study this peculiar numerical phenomenon and to under-
tions but give poor resolutions due to excessive numerical stand its formation and propagation. Our study shows that
smearing. Modern high order shock capturing schemes are these downstream oscillations propagate along each char-
high order nonlinear schemes that reduce to lower order acteristic family and decay in l y and l 2 while preserving the
only near discontinuities to suppress numerical oscillations mass in l 1 norm. They are generated by the unsteadiness of
(e.g., [26, 28, 6, 9]). For shocks of moderate strength these the discrete shock profile. The scenario is as follows. Since
methods give sharp resolutions without oscillations. all shock capturing methods introduce artificial viscosity

However, there are several circumstances where even in the continuity equation, the smeared shock profile of
first-order schemes (such as the Godunov method [4] and the density will introduce a momentum spike when the

shock is stationary or moves slowly. To maintain momen-
1 Email address: jin@math.gatech.edu. Research was supported in part tum conservation, the downstream error will necessarilyby NSF Grant No. DMS-9404157.

emerge in order to balance the mass carried by the momen-2 Email address: jliu@math.temple.edu. Research was supported in part
by NSF Grant No. DMS-9505275. tum spike. Although each family of the downstream waves
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decays in time, our numerical experiments show that the viscosity matrices due to different building blocks and in-
terpolation procedures; thus they are excellent examplesnumerical viscous shock or spike profiles are highly un-

steady. The unsteady nature of the viscous or spike profile to illustrate our idea. We would like to point out that
similar numerical phenomena occur in essentially all otherbecomes a constant source for the generation of new down-

stream waves, and as a result, the downstream solution is shock-capturing methods.
In subsequent sections we let xj11/2 be the grid points,polluted for all time.

In our numerical experiments we also observed the peri- Uj11/2 be the pointwise value of U at x 5 xj11/2 , and Uj be
either the cell average value on the jth cell defined byodic structure of the unsteady viscous shock profile. The

period is essentially the time for the shock to propagate
one spatial grid.

The importance of such a study goes beyond the slow Uj 5
1

Dx
Exj11/2

xj21/2

U(x, t) dx,
shock problem. In [21] this kind of error has been blamed
for the slow convergence of upwind methods to steady
state in transonic flow computations reported, for example, as in most shock capturing methods, or simply the value
in [15, 29]. Indeed when the solution is near the steady of U at the cell center xj 5 (xj11/2 1 xj21/2) (as in the ENO
state the shock moves slowly. This will be further explored schemes of Shu and Osher).
in Section 5. The study of the unsteadiness of the discrete
shock profile is also an active area of research in the aero-

2. NUMERICAL SOLUTIONS OF A SLOWLYnautical gas turbine industry because of the need to predict
MOVING SHOCKthe onset of flutter, as well as the magnitude of forced

response loading and oscillations [5, 12].
Consider the 1D compressible Euler equations of gas dy-

The outline of the paper follows. In Section 2 we present
namics,

some numerical results on a Riemann problem of the com-
pressible Euler equations that admits slow shocks. Numeri-
cal spikes and downstream oscillations are generated in tr 1 xm 5 0,
this example. These results also show that methods using

tm 1 x(ru2 1 p) 5 0, (2.1)the Lax–Friedrichs scheme as a building block outperform
those using the Roe scheme as a building block. In Section tE 1 x(u(E 1 p)) 5 0.
3 a traveling wave analysis on the viscous isentropic Euler
equations (Euler equations with viscosity terms in both

Here r, u, m 5 ru, p, and E are respectively the density,the continuity and momentum equations) is presented,
velocity, momentum, pressure, and total energy. For a po-which shows the existence of the momentum spikes and
lytropic gas, the equation of state is given byits difference from the momentum profile of the Navier–

Stokes equations. In Section 4 we discuss the downstream
waves that balance the momentum spike for the momen- p 5 (c 2 1)(E 2 Asru2). (2.2)
tum conservation. Numerically we demonstrate that the
downstream waves propagate along characteristics and be-

Let A denote the Jacobian matrix F(U)/U. The Eulerhave diffusively. We also show numerically that the viscous
equations (2.1)–(2.2) are hyperbolic with eigenvalues(or spike) profile in these examples highly fluctuate, thus

become a constant source for the generation of new down-
stream waves that ruin the downstream solution for all a1 5 u 2 c, a2 5 u, a3 5 u 1 c, (2.3)
time. In Section 5 we study the effect of the momentum
spike to the computation of steady state solutions and

where c 5 Ïcp/r is the local speed of sound. The rightconnect it to the non-convergence of high order schemes.
eigenvectors of A form the matrix R 5 (R1, R2, R3) given byWe finally make some concluding remarks in Section 6.

For numerical experiments we use a Lax–Friedrichs type
scheme (abbreviated as LxF), the second-order relaxation
scheme (with van Leer’s slope limiter [26]) of Jin and Xin

R 5 1
1 1 1

u 2 c u u 1 c

H 2 uc Asu2 H 1 uc
2, (2.4)[9] (abbreviated as RELAX2), and the essentially non-

oscillatory schemes (both the ENO-ROEs that use the Roe
scheme as the building block and the ENO-LLFs that use
the Lax–Friedrichs scheme locally as the building block)
developed by Shu and Osher [23]. The purpose for the with H 5 c2/(c 2 1) 1 u2/2. The inverse of R defines the

left eigenvectors (L1, L2, L3) 5 R21 of A bychoice of these schemes is that they have quite different
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as the building block. A Lax–Friedrichs type scheme that
we use is

Fj11/2 5 As(F(Uj) 1 F(Uj11)) 2 Asa(Uj11 2 Uj), (2.11)R21 51AsSb1 1
u
cD AsS2b2u 2

1
cD Asb2

1 2 b1 b2u 2b2

AsSb1 2
u
cD AsS2b2u 1

1
cD Asb2

2, (2.5)

where a 5 supU huu 2 cu, uuu, uu 1 cuj.
In addition we also use the RELAX2 in our computa-

tions. This idea was originally introduced by Jin and Xin
[9]. By introducing a new vector variable V [ R3, one canwith
couple U and V by the following second-order hyper-
bolic system

b2 5
c 2 1

c2 , b1 5 b2
u2

2
. (2.6)

tU 1 xV 5 0,
(2.12)

tV 1 AxU 5 2
1
«

(V 2 F(U)).Let U 5 (r, m, E)T be the vector of conserved quantity,
Âj11/2 be the Roe matrix satisfying [22]

In (2.12), « is a small positive parameter called the relax-
F(Uj11) 2 F(Uj) 5 Âj11/2(Uj11 2 Uj). (2.7)

ation time,

By projecting Uj11 2 Uj onto hRj11/2j one obtains the charac- A 5 diag(a2
1 , a2

2 , a2
3) (2.13)

teristic decomposition

for a1 . 0, a2 . 0, a3 . 0 is a positive diagonal constant
matrix satisfyingUj11 2 Uj 5 O3

p51
a p

j11/2R
p
j11/2 . (2.8)

A $
F(U)2

U
. (2.14)In this decomposition the local characteristic variables

a p
j11/2 can be obtained using Roe’s average which perfectly

resolves stationary discontinuities. As « R 0 (2.12) formally approximates (2.1) via the Chap-
Among our first-order schemes we use the ENO1-Roe man–Enskog expansion. By applying the MUSCL scheme

and ENO1-LLF by Shu and Osher and a Lax–Friedrichs [26] to the linear convection in (2.12), coupled with a sec-
type scheme. The ENO1-Roe has the numerical flux de- ond-order stiff time integrator, one can obtain a second-
fined by order TVD type scheme based on (2.12) that may avoid

the Riemann solver or the use of the Roe matrix. In our
Fj11/2 5 As(F(Uj) 1 F(Uj11))

(2.9a)
experiment we choose « 5 1026 and ai 5 supU uaiu.

2 Assgn(lp
j11/2)(cp

j11 2 cp
j )Rp

j11/2 , Except the LxF (2.11), all other schemes that we use
here have non-linear viscosities. The RELAX2 and ENO2s
are TVD schemes.where cp

j is the component of F(Uj) in the pth characteris-
We carried out the following 1D test on a Riemanntic family,

problem of the Euler equation (2.1)–(2.2).

EXAMPLE 2.1. We take the following initial data [19]F(Uj) 5 O3
p51

cp
j Rp

j . (2.9b)
that gives a Mach-3 shock moving to the right with a speed
s 5 0.1096:

The nth order ENO extension of this scheme will be re-
ferred to as the ENOn-Roe [23]. These schemes use the
Roe scheme as the building block. The ENO1-LLF has

UL 5 1
3.86

23.1266

27.0913
2 if 0 # x , 0.5;

(2.15)

the numerical flux defined by

Fj11/2 5 As(F(Uj) 1 F(Uj11)) 2 Asap
j11/2a

p
j11/2R

p
j11/2 , (2.10)

where a p
j11/2 5 max(ul p

j u, ul p
j11u). The nth order ENO exten- UR 5 1

1

23.44

8.4168
2 if 0.5 # x # 1.

sion of this scheme will be referred to as the ENOn-LLF
[23]. These schemes use the Lax–Friedrichs scheme locally
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FIG. 2.1. A slowly moving shock computed by LxF, RELAX2, ENO1-Roe, and ENO2-Roe (from top to bottom). In all plots Dx 5 0.01, Dt 5

0.001, t 5 1. Solid lines are the exact solutions, while the dashed circles are numerical solutions.
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FIG. 2.1 Continued. A slowly moving shock computed by ENO3-Roe, ENO1-LLF, ENO2-LLF, and ENO3-LLF (from top to bottom). In all
plots Dx 5 0.01, Dt 5 0.001, t 5 1. Solid lines are the exact solutions, while the dashed circles are numerical solutions.
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We take c 5 1.4 and output the results at t 5 0.95 in Fig.
2.1. All computations are carried out in the domain [0, 1]
with Dx 5 0.01, Dt 5 0.001. All schemes exhibit some level
of momentum spikes and postshock oscillations, with the
oscillation of LxF almost negligible. The higher order Lax–
Friedrichs type schemes produce less severe downstream
oscillations than their Roe counterparts. Also higher order
interpolations produce more severe oscillations than
their lower order counterparts. Overall speaking, the
ENO2-LLF gives the best result, followed by RELAX2.

FIG. 3.1. A sketch of the phase portrait of Eqs. (3.7).
3. THE MOMENTUM SPIKES

3.1. The Existence of the Spike c1 5 c2 ,
c 2

1

f1

1 p(f1) 5
c 2

f2

1 p(f2), (3.5)

Earlier the momentum (or velocity in Lagrangian coor-
and the Lax entropy condition givesdinates) spikes in stationary shocks were reported in [24]

for a mixed type problem and in [27] for the nozzle flow
0 , u2 2 c2 , u2 1 c2 , u1 2 c1 , 0 , u1 1 c1 , (3.6)computation. Here we present a traveling wave analysis

on the viscous Euler equations, which shows precisely the where u6 5 c6/f6 and c 5 Ïkcfc21.
formation of the momentum spike. Consider the following Applying the traveling wave solution (3.2) in (3.1) one
viscous isentropic Euler equations for density r and mo- gets the following ODEs:
mentum m:

jf 5 c 2 c2 , (3.7a)
tr 1 xm 5 « xxr, (3.1a)

jc 5
c 2

f
1 p(f) 2

c 2
2

f2

2 p(f2). (3.7b)
tm 1 x Sm2

r
1 p(r)D5 « xxm. (3.1b)

This system has two rest points: V1 5 (f1 , c2) on the right
and V2 5 (f2 , c2) on the left on the phase plane ofHere the pressure p(r) 5 kr c for some constants k and c.
(f, c). It has two distinct eigenvalues l1 5 u 2 c and l2This hyperbolic system has two distinct eigenvalues u 6
5 u 1 c, with corresponding eigenvectors R1 5 (1, u 2c, where u 5 m/r is the velocity, c 5 Ïckrc21 is the sound
c)T and R2 5 (1, u 1 c)T. By the entropy condition (3.6),speed. Although the true numerical viscosity is far more
V1 is a saddle point with a stable manifold on R1 , and V2complicated than those appeared on the right-hand side
is a source. Thus a heteroclinic orbit O will connect V2of Eq. (3.1), a study on (3.1) is sufficient for a full under-
and V1 in the direction of R1 [25], as shown in Fig. 3.1.standing of the numerical momentum spike.
(In Fig. 3.1, R6

1 and R6
2 are the two eigenvectors at V6 ,We look at the traveling wave solution to (3.1). Let

respectively). Since O is smooth and jf is not identicallyj 5 (x 2 st)/«, where s is the shock speed. Then the
zero if f2 ? f1 , thus (3.7a) implies that c is not a constant.traveling wave solution takes the form
Moreover, whenever f(j) connects f2 and f1 with a mono-
tone profile, jf becomes a spike. Thus c 5 jf 1 c2 isr(x, t) 5 f(j), m(x, t) 5 c(j) (3.2)
a spike.

Here we give an example of a stationary shock for thewith asymptotic states
Euler equations (2.1).

f(6y) 5 f6 , c(6y) 5 c6 . (3.3)
EXAMPLE 3.1. We take the initial data

The Rankine–Hugoniot jump condition requires

2s(f1 2 f2) 1 (c1 2 c2) 5 0,
(3.4)

UL 5 1
2/3

1/Ï2

9/14
2 if 0 # x , 0.5;

(3.8)2s(c1 2 c2) 1 Sc 2
1

f1

1 p(f1) 2
c 2

2

f2

2 p(f2)D5 0.

We first assume that the shock is stationary (s 5 0) UR 5 1
2

1/Ï2

23/14
2 if 0.5 # x # 3.

and corresponds to the eigenvalue u 2 c. Then the jump
condition (3.4) reduces to
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FIG. 3.2. Numerical density r and momentum m profiles of Example 3.1 by the LxF. Dx 5 0.01, CFL number 5 0.95. Here the solid lines are
the exact solution, the circles are numerical solutions.

For this problem the exact solution is exactly the same For a non-stationary shock, the traveling wave solution
(3.2) applied to (3.1a) givesas the initial data, i.e., a stationary shock, corresponding

to the eigenvalue u 2 c, that connects the two initial
constant states of the density, while the momentum is jf 5 2s(f 2 f2) 1 c 2 c2 ,
the initial constant in the entire domain. We use the
LxF to solve this problem. In Fig. 3.2 we depict the

ornumerical results at t 5 1 and t 5 2 with 300 points
(Dx 5 0.01), CFL number 5 0.95. Only density and

c 5 sf 1 jf 1 (c2 2 sf2). (3.9)momentum will be depicted. Other quantities, such as
velocity, total energy, pressure, and temperature behave
qualitatively similar to the density, thus they will not be Hence c is a superposition of a monotone profile sf with
depicted here. Observe that the density is smeared out a spike corresponding to jf. When s is small ( for stationary
at the shock location x 5 0.5, and the momentum has or slowly moving shock), the monotone profile sf becomes
an O(1) spike there. Also observable is the two waves small and the spike term j f dominates. Thus the shock
that travel to the right, spread out and decaying. These profile of c is a non-monotone spike. Therefore the spike
waves will be carefully studied in Section 4. The behavior is usually generated in a stationary or slowly moving shock,
of the spike differs significantly from the downstream as shown in our earlier examples. For a strong shock the
waves, since the spike does not spread out and decay. monotone profile sf dominates so the shock profile of the
Note that the shock location is slightly off center of the momentum is monotone.
correct location. This is because a small amount of mass
has been carried away by the downstream waves.

In Fig. 3.3 we display the results at t 5 5 with 100, 200, 3.2. The Viscous Profile of the Navier–Stokes Equations
and 400 points, respectively. As the spatial grid is refined

Since the more physical viscous shock profile is deter-the momentum spike becomes narrower, but the magni-
mined by that of the Navier–Stokes equations, we nowtude remains essentially unchanged. The downstream
study the viscous profile of the isentropic Navier–Stokeswaves observed in Fig. 3.2 have moved to the right, and
equations and compare with that of the viscous Eulerno new downstream waves have been generated.
equations (3.1). The isentropic Navier–Stokes equa-Note that the momentum spikes we observed here are
tions aresolely numerical artifacts. By solving the Riemann problem

(3.8) exactly one obtains a monotone momentum.
t r 1 xm 5 0,

(3.10)
For this problem, any method using the Roe scheme as

the building block [16] (such as the ENO-Roe) does not
give such a momentum spike, since the Roe scheme gives tm 1 xSm2

r
1 p(r)D5 « xx Sm

r
D.

the exact stationary shock (no smearing) by its design.
However, it is no longer the case when the shock is moving,
as shown in Example 2.1. Applying the traveling wave solution (3.2) in (3.10), again
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FIG. 3.3. Numerical density r and momentum m profiles of Example 3.1 by the LxF with three different mesh sizes. Solid lines: 100 points;
dashed lines: 200 points; ‘‘———’’: 400 lines. In all runs CFL number 5 0.95.

FIG. 3.4. Numerical mass fluxes of Example 3.1 by the LxF (left); numerical mass flux of Example 2.1 by the RELAX2 (right). In both cases
the momentum spikes do not appear, but the downstream patterns remain basically unchanged.

FIG. 4.1. The formation of the spike and downstream wave in the ENO1-Roe calculation of Example 2.1 after five time steps. As the density
is smeared, the momentum forms a spike and a downstream wave to balance the mass of the spike for momentum conservation.
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FIG. 4.2. The downstream waves in ‘‘characteristic’’ variables. Note that each wave belongs only to one characteristic family.

assuming the shock speed s 5 0, one obtains the follow- thus whenever f is monotone so is c. This excludes the
possibility of a momentum spike for a moving viscousing ODEs:
shock in the Navier–Stokes equations.

In conclusion, even if the viscous profile of f of thec ; c2 , (3.11a)
Navier–Stokes equations (3.10) could be similar to that of
the viscous Euler equations (3.1), the profiles of c may bej Sc

f
D5

c 2

f
1 p(f) 2

c 2
2

f2

2 p(f2). (3.11b)
significantly different. Since the physically relevant solu-
tion of the Euler equations is considered to be the zero

Equation (3.11a) shows that c is a constant, thus it contains viscosity limit of the Navier–Stokes equations, the momen-
no spike. Let f (f) 5 c 2

2/f 1 p(f), then (3.11b) becomes tum spike appeared in the viscous Euler equations is to-
tally unphysical.

j Sc

f
D5 f (f) 2 f (f2). (3.12) Remark 3.1. Although we only present the study on the

isentropic Euler and Navier–Stokes equations, the above
analysis can be carried exactly through to the full Euler

Since f (f) is a strict convex function and f (f2) 5 f (f1); and Navier–Stokes equations. In fact, the argument on the
hence f (f) 2 f (f2) is always negative between f2 and monotonicity of the momentum uses only the continuity
f1 , so j(1/f) does not change sign by (3.12). This implies equation, which is the same for both the isentropic and
the monotonicity of 1/f, or f. the full Euler or Navier–Stokes equations.

When s ? 0, applying the traveling wave solution (3.2)
in (3.10a) gives Remark 3.2. The non-monotonicity of the momentum

profile does not contradict the mathematical stability the-
c 5 sf 1 (c2 2 sf2); ory of discrete shocks. It was proved in [13] that the Lax–
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FIG. 4.3. Time evolution of the momentum spike and downstream waves by LxF (top, t [ [0, 2]) and ENO1-Roe (bottom, t [ [0.5, 0.8]). For
better visualization these graphs are displayed upside down. Note the fluctuation of the spike in LxF is much smaller than that of ENO1-Roe. This
is also reflected in the downstream wave patterns, the diffusive nature of which is apparent.

Friedrichs scheme applied to general system of conserva- and the Navier–Stokes equations (3.10) is that « is replaced
by 2«r. A similar traveling wave analysis carried out in thetion laws yields strictly monotone principal eigenvalues at

the discrete shock profile. However, as shown here, the preceding section can now be applied to (3.14) to show
that m is monotone; thus it does not have the spike.primitive variables, such as the momentum, may not be

monotone. Such a transformation has previously been used by Slem-
rod [24] in his study of mixed hyperbolic–elliptic equations.

Remark 3.3. A related numerical artifact, also induced
Note that the difference between m and m is negligible in

by numerical viscosity, occurs in the simulation of a strong
smooth regions. Near the discontinuities xr is big and this

shock reflecting from a rigid wall [18, 17]. This phenome-
transformation changes the momentum dramatically. It is

non will be further studied in a forthcoming paper.
exactly this transformation that cancels out the momentum
spike at discontinuities.Remark 3.4. Pressure spike near a contact discontinuity

can also be generated by numerical viscosity. This phenom-
3.4. A Numerical Postprocess that Eliminates the

enon was first pointed out by von Neumann and Richtmyer
Momentum Spikes

[20] using the Lagrangian formulation of the fluid equa-
tions. Similar traveling wave analysis can also be applied The modified equation analysis to the shock-capturing
to the viscous Euler equations to show this phenomenon. methods show that the effect of numerical viscosity is simi-
A non-conservative approach was introduced by Karni lar to the viscous regularization of the Euler equations.
in [10] to overcome this kind of pressure spike and the In other words, a shock-capturing method is effectively a
consequent noises when computing the multifluid flows. higher order approximation to the modified Euler equa-

tions (3.1), with a probably different (usually nonlinear)
3.3. Analytic Elimination of the Spike viscosity terms which are method specific. Although our

analysis in the proceding sections is for linear viscositiesIn this section we show an asymptotic connection be-
(which is the case for linear schemes such as the LxF),tween the viscous Euler equations and the Navier–Stokes
it does provide a good understanding even to nonlinearequations, which provides a guidance for a postprocess
schemes. Moreover, it provides the guidance on how tostep that can eliminate the momentum spike. Let
remove the momentum spike for general shock capturing
methods: an analog of the transformation (3.13) should ber 5 r, m 5 m 2 «xr (3.13)
performed numerically. This part of the work is motivated
by earlier numerical studies on mixed hyperbolic–ellipticand apply it to the viscous Euler equations (3.1), one gets
system [1, 8].(after ignoring the O(«2) term)

A semi-discrete conservative discretization of the Euler
equations (2.1) istr 1 xm 5 0,

(3.14)
tUj 1

1
Dx

(Fj11/2 2 Fj21/2) 5 0. (3.16)
tm 1 x Sm2

r
1 p(r)D5 2«x(rxu).

The numerical flux for most shock-capturing methods can
be written aswhere u 5 m/r. Now the only difference between (3.14)



SLOWLY MOVING SHOCKS 383

FIG. 4.4. Time evolution of the peak of the momentum spike by (left to right, then top to bottom) LxF, RELAX2, ENO1-Roe, and ENO3-Roe.

Fj11/2 5 As(Fj 1 Fj11) 2 Qj11/2 Dj11/2U, (3.17) tU 1 xF(U) 5 x(Q(U)xU). (3.19)

where Dj11/2U 5 Uj11 2 Uj , and Q 5 Q(U; j) is a general A similar transformation to (3.13) for (3.19) is then
numerical viscosity matrix. Applying (3.17) in (3.16) one
gets

r 5 r, E 5 E, m 5 m 2 (Q(U)xU) ? e1 , (3.20)

tUj 1
1

2Dx
(Fj11 2 Fj21)

(3.18)
where e1 5 (1, 0, 0)T. In order to eliminate the momentum
spike generated by the scheme (3.18), we use the discrete
analog of (3.20):5

1
Dx

(Qj11/2 Dj11/2U 2 Qj21/2 Dj21/2U).

mj 5 As(mj 1 mj11) 2 (Qj11/2 Dj11/2) ? e1 . (3.21)
This system is a discrete analog of the viscous Euler equa-
tions (3.1), but now the viscosity term on the right-hand
side of (3.18) may be different from those appeared in This is a consistent, second-order discretization of (3.20).
(3.1). In order to eliminate the numerical spike one has to By comparing (3.21) with (3.17) we find that
do a discrete analogy of (3.13). Note that (3.18) is a second
order discretization to the following viscous Euler equa-

mj 5 mj11/2 . (3.22)tions
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In Fig. 3.4 we display the mass flux mj11/2 for Example
2.1 (Fig. 3.2) and Example 3.1 (the mass flux of RELAX2).
They do not have the spike, but they have essentially the
same features as the momentum mj elsewhere.

4. THE DOWNSTREAM OSCILLATIONS

We bear in mind that all reasonable shock-capturing
FIG. 5.1. The divergent nozzle. methods are in conservative form. Due to the conservation

of momentum, the total mass of momentum carried by the
spike profile should be compensated by an equal amountThus the discrete transformation (3.21) simply transfers
of momentum mass elsewhere. This explains the initialmj (the cell average value or the value at cell center) into
formation of the downstream waves. In this section we willthe mass flux mj11/2 !
also numerically demonstrate that each downstream waveThis defines our postprocess step for the momentum
travels along with a characteristic family, and its magnitudespikes. While the momentum mj has (and will always have)
(or l y and l 2 norms) decays in time but the mass (or l 1

a spike, the mass flux mj11/2 does not have the spike!
norm) conserves. Moreover, we will show the unsteadinessEarlier similar transformations were used for mixed hy-
of the discrete shock for slowly moving shocks, which con-perbolic–elliptic systems in [1, 8]. This kind of transforma-
tributes to the downstream oscillations for all time.tion was applied in order to obtain the so-called viscosity–

In Fig. 4.1 we output the result of ENO1-Roe for Exam-capillarity solutions and to eliminate the velocity spike
ple 2.1 after five time steps to illustrate the formation ofacross the phase boundary.
the spike and a downstream wave. As the density is

Remark 3.5. Although the ENO fluxes cannot be writ- smeared, the momentum forms a spike and a downstream
ten in the general form (3.17), the same postprocess (3.22) wave. The spike and the downstream wave carry the same
works equally well for the ENO, as shown later by our mass so the total momentum is conserved.
numerical examples. In order to demonstrate that the downstream are diffu-

sive and propagate along the characteristics, we use theRemark 3.6. In many numerical computations for hy-
Roe decomposition (2.8), where a p represents the compo-perbolic systems, even TVD or ENO schemes may gener-
nent of Uj11 2 Uj in the pth characteristic family. We defineate numerical overshoots or undershoots near a discontinu-
the numerical ‘‘characteristic’’ variable asity. This is hardly surprising since TVD and ENO are

concepts for scalar equations or linear systems. They are
b p

j 5 O
i#j

a p
i11/2 Dx. (4.1)

usually extended to nonlinear systems via the local charac-
teristics decompositions, which is basically an idea for lin-
ear systems, as in nonlinear systems there is no global A distinction between the dispersive oscillations and the

downstream oscillations studied here is that the latter liecharacteristic variables. The numerical spike studied here
also looks like an overshoot or undershoot. However, they only in its own characteristic family. For example, a wave

appears in b p does not appear in b q for p ? q. These canhave distinct features. The overshoots or undershoots can
be damped by introducing more numerical viscosities, be seen in Fig. 4.2. We also see that each wave moves away

with the corresponding characteristic speed and behaveswhile more numerical viscosity will make the spike worse.
Our study provides an easy method to distinguish the over/ diffusively (spread out and decayed).

If the shock is stationary, then the viscous or the spikeundershoots from the spike, since the transformation (3.22)
can remove the spike but not the over/undershoots! profile will become stationary as well, after the initial for-

mation of the spike and the downstream waves, as shown
Remark 3.7. Since mj11/2 is not a conserved variable,

in Fig. 3.2. However, when the shock moves (slowly), the
the transformation (3.22) can only be done in the postpro-

viscous or spike profile cannot be steady. In Fig. 4.3 we
cess step. Thus it is basically a cosmetic fix and does not

display the time evolution of the momentum profile of the
improve the numerical results such as the downstream os-

LxF and ENO1-Roe for Example 2.1. After some time the
cillations.

fluctuation in the spike of LxF becomes quite small, thus
it generates new downstream waves which are almost negli-Remark 3.8. We believe that the study on the momen-

tum spike is also theoretically interesting. It indicates that gible. For ENO1-Roe, however, the spike (viscous) profile
keeps fluctuating in and O(1) manner, and new and strongone cannot obtain a uniform l y convergence on the zero

viscosity limit of the viscous Euler equations. Such an esti- downstream waves are produced for all time. The diffusive
nature of the downstream waves are evident in both pic-mate could be obtained only after the subtraction of the

spike profile. tures.
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FIG. 5.2. Numerical solutions of the divergent nozzle flow problem (5.1)–(5.3) at t 5 672.40 with 51 points and Dt 5 0.046 by the RELAX2
(left) and ENO3 (right). Here the solid lines are the exact solution; the dashed circles are numerical solutions.

In Fig. 4.4 for the same example we plot the peak of more unsteady than those of the LxF and RELAX2. We
would like to point out that it is the amount of mass changethe momentum spikes for some schemes as a function of

time. The oscillatory nature of the spike is evident with (instead of the change of the magnitude of the spike) dur-
ing the perturbation of the viscous profile that determinesvarying magnitude of fluctuations. This figure shows that

the upwind type schemes (ENO-Roe) have viscous profiles the level of the downstream errors, due to the conservation
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FIG. 5.3. The convergence study of the RELAX2 (left) and the ENO3-Roe (right).

of the momentum. The more the mass of the spike profile is because, when s Dt ! Dx, there exists a sufficiently large
q such that uq(s Dt) 2 Dxu , s Dt, or us Dt/Dx 2 1/qu #varies the more strongly the downstream waves emerge for

momentum conservation. Interesting is that the peaks are 2/q2. However, within each period the shock profile is
unsteady, which becoming the source of the new down-essentially periodic, with the duration of each period agrees

with the time for the shock to move one grid point. stream waves in all time for these schemes.

Remark 4.1. Recall that the definition of a discrete A scheme that completely eliminates such an error
traveling wave solution Fn

j , an approximation of U(xj , tn), should have a steady discrete viscous profile. However,
tn 5 n Dt, requires this is impossible if the shock is moving (slowly), since

it takes many time steps for the shock to move to the
Fnq

j 5 F0
j2np , (4.2) next cell, and in between the viscous profile has to

perturb in order to keep the unsteady nature of the
solution. An alternative is to have a scheme that has awhere s Dt/Dx 5 p/q for some relative prime integers p

and q. The stability of such discrete shock for the Lax– more steady viscous profile, and our numerical experi-
ment shows that the Lax–Friedrichs scheme could serveFriedrichs scheme was established by Jennings [7] for scalar

equations and by Majda and Ralston [16] and J.-G. Liu such a purpose. Thus the idea is to smear out the shock
by a Lax–Friedrichs type scheme. This is clearly againstand Xin [13] for nonlinear systems. The periodicity of the

momentum peaks in Fig. 4.4 shows the stability of the the high resolution principle. What we would like to
emphasize here is that when one develops a shockdiscrete traveling wave solution Fn

j for these schemes mod-
ulus the time for the shock to travel one grid point. This capturing scheme, one should not only concentrate on

FIG. 5.4. The peak of the momentum spike for the RELAX2 (left) and ENO3-Roe (right).
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FIG. 5.5. Time evolution of the numerical solutions by ENO1-Roe (left) and ENO3-Roe (right) for t [ [500, 504.6]. The x-axis reads from left
to right.

the resolution (by counting the number of points across spike contributes to the non-convergence to the steady
state solution of some high resolution shock capturinga shock), but also pay special attention to the stability

of the numerical viscosity. A scheme that has both high schemes. Indeed when the solution is near the steady state
the shock moves slowly and the numerical errors discussedresolution and a more stable viscosity is ideal. According

to this standard, the ENO-LLFs are better than ENO- earlier will occur is such a circumstance. Here, we use
the quasi-one-dimensional nozzle flow as an example toRoes, since the former offers essentially the same resolu-

tion but have more stable viscosities. illustrate this phenomenon.
The quasi-one-dimensional nozzle flow can be describedThe discrete shock profile perturbs even when the shock

does not move slowly. Thus the downstream oscillations by the following Euler equations with a geometric
source termexist even for fast shocks. However, in the fast shock case

the momentum profile is monotone, thus does not leave
much room for the shock profile to perturb. In other words, t(rk) 1 x(mk) 5 0,
each perturbation does not change the mass of the viscous

t(mk) 1 x(ru2k 1 pk) 5 pxk, (5.1)profile much, and the downstream errors become negligi-
ble. For slow shock the momentum profile has a spike, t(Ek) 1 x(u(E 1 p)k) 5 0,
which increases the mass of the viscous profile and the
relative mass change in each perturbation, so the down-

where k(x) is area of the nozzle. We consider only a diver-stream errors become more significant. This also illustrates
gent nozzle from [3] withwhy the downstream errors in the density is far less signifi-

cant. Since the density is monotone, thus the relative
k(x) 5 1.398 1 0.347 tanh(0.8x 2 4). (5.2)change in the mass of the viscous profile is smaller than

that of the momentum.
In summary, although each family of the downstream as shown in Fig. 5.1. The steady flow conditions were super-

waves decays time-asymptotically, the perturbing spike or sonic inflow, subsonic outflow with a shock. In all the
viscous profile is a constant source for the generation of calculations the computational domain is 0 # x # 10. The
new downstream waves, causing the downstream oscilla- numerical initial conditions are obtained using linear inter-
tion for all time. Higher order methods use higher order polation between the exact steady state boundary values,
interpolations, which amplify the level of oscillations and and the boundary conditions are specified on the three
exhibit rich but spurious postshock structures. conservative variables rk, mk, Ek, one the left boundary

x 5 0 and rk on the right boundary x 5 10, as
5. STEADY STATE CALCULATIONS

(rk)(0, t) 5 0.5277, (mk)(0, t) 5 0.6855,
(5.3)A closely related problem is the steady state calculation.

In this section we show numerically how the momentum (ek)(0, t) 5 1.4465, (ek)(10, t) 5 3.454.
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For the given data (5.3) there is a stationary shock near equation. The mass carried by this spike is compensated
by downstream waves of equal mass for momentum conser-x 5 4.816. We also use zeroth-order space extrapolation to

obtain the numerical boundary conditions for the unknown vation. These downstream waves propagate along charac-
teristics and decay in l y and l 2. A perturbing viscous orvariables mk, Ek at the outflow boundary x 5 10 [30].

We use the RELAX2, ENO1-Roe, and ENO3-Roe to spike profile is a constant source for the generation of
new downstream waves, which explains the downstreamcompute the above nozzle flow. Previously the slow conver-

gence of high resolution methods have been reported [15, oscillations for all time.
Note the schemes we used in the paper are monotone,29]. In Fig. 5.2 we use RELAX2 and ENO3-Roe, with 51

points, Dt 5 0.046, and output the results at t 5 672.40. TVD, or ENO schemes. All these monotonicity theories
are established only for scalar equations, or linear systems.Only r, mk and the flux of mk will be depicted in Fig. 5.2.

The mk profiles in all these schemes exhibit spurious spikes For non-linear systems there are no global characteristic
variables; thus these methods are usually extended to non-at the shock location. The ENO-Roe3 resolves the steady

shock better, with a narrower viscous and spike profile. linear systems using the idea for linear systems, i.e., via
the so-called local characteristic decomposition (using theThis is due to the fact that ENO-Roe uses the Roe matrix

which is advantageous for stationary discontinuities. How- Roe matrix, for example). Since there is no theory for the
monotonicity of these methods for non-linear systems, itever, one can observe the oscillatory behavior of ENO3-

Roe in the downstream direction. This causes the problem is not surprising to see the non-monotone behavior repre-
sented by the spike and downstream oscillations reportedof non-convergence for ENO3-Roe. We also see that the

fluxes of mk do not have the spikes in both methods. here. It seems to us that, to fully solve this problem, instead
of applying scalarly monotone, TVD, or ENO scheme toTo study the numerical convergence we define the l 2

error function as non-linear systems, one needs a method that is systemati-
cally ‘‘monotone, TVD, or ENO.’’ One also needs to
choose numerical viscosity properly so it mimics the physi-error
cal viscosity of the Navier–Stokes equations. An ideal

5 !(rk(t 1 Dt) 2 rk(t))2 1 (mk(t 1 Dt) 2 mk(t))2

1 (Ek(t 1 Dt) 2 Ek(t))2 (5.4) scheme should have both a high resolution and a more
stable numerical viscosity. These require good theories for
both inviscid and viscous nonlinear systems [14] and remain

and plot log10(error) in Fig. 5.3. By the time we stopped open and challenging research subjects for the future.
t 5 672.40 the RELAX2 has reached an error of 10210, Upon the completion of this work we were informed of
while the error for ENO3-Roe stays in the order of 1023. the work [31] on the same subject but using a dynamical
In Fig. 5.4 we plot the magnitude of the momentum spike system approach.
and found that they become steady for both RELAX2 (at
t P 150) and ENO3-Roe (at t P 300). For a steady state ACKNOWLEDGMENTS
solution one does not expect that the study in Section 4
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spike. To justify this we compare the results of ENO1-Roe
and ENO3-Roe in Fig. 5.5. Although ENO1-Roe has a
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